



## 3      Synthesis and biological evaluation of novel steroid-modified 4      ether phospholipids

5      Haralabos C. Karantonis<sup>a</sup>, Emmanuel N. Pitsinos<sup>b</sup>, Smaragdi Antonopoulou<sup>c</sup>,  
6      Elias A. Couladouros<sup>b,d</sup>, Constantinos A. Demopoulos<sup>a,\*</sup>

7      <sup>a</sup> *Laboratory of Biochemistry, Faculty of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis,  
8      GR-157 71 Athens, Greece*

9      <sup>b</sup> *Laboratory of Organic and Bio-Organic Chemistry, Institute of Physical Chemistry, NCSR "DEMOKRITOS",  
10     Aghia Paraskevi, P.O. Box 60228, GR-153 10 Athens, Greece*

11     <sup>c</sup> *Department of Science of Dietetics-Nutrition, Harokopio University, 70 El. Venizelou Street, GR-176 71 Athens, Greece*

12     <sup>d</sup> *Chemistry Laboratories, Agricultural University of Athens, Iera Odos 75, GR-118 55 Athens, Greece*

13     Received 10 September 2004; received in revised form 17 December 2004; accepted 22 July 2005

13

### 14      Abstract

15      Platelet activating factor is one of the most potent inflammatory ether phospholipid mediators known and structurally modified  
16      analogues are of considerable interest as potential therapeutic preparations. Inspired by the proposed structure for a novel endogenous  
17      hydroxy-PAF analogue isolated recently from gingival crevicular fluid, we designed and prepared two novel steroid-modified ether  
18      phospholipids. These two novel compounds exhibit marked chemical and biological similarities to their endogenous prototype and  
19      they antagonize it being less active in inducing washed platelet aggregation through PAF receptors.

20      © 2005 Elsevier Ireland Ltd. All rights reserved.

21      **Keywords:** Steroid ether phospholipids; Platelets; Platelet activating factor; PAF-acetylhydrolase; Periodontal disease

### 23      1. Introduction

24      Platelet-activating factor (1-*O*-alkyl-2-acetyl-*sn*-  
25      glycero-3-phosphocholine, PAF) occurs naturally in cell  
26      membranes and is one of the most potent inflammatory  
27      ether phospholipid mediators known (Blank et al.,

1981; Demopoulos et al., 1979; Montruccio et al.,  
28      2000). PAF (1, Fig. 1) plays an important role in a  
29      number of physiological and pathological processes,  
30      such as allergy, hypotension, anaphylaxis, thrombosis,  
31      ischemia, acute infections in transplantation, nephritis,  
32      gastric ulcer, etc. (Snyder, 1987). Activated inflammatory  
33      cells challenged by bacterial lipopolysaccharides  
34      produce and secrete inflammatory mediators like PAF  
35      (Jakubowski et al., 2004), which is believed to be a key  
36      regulator of various diseases like periodontal disease  
37      (Antonopoulou et al., 2003). Moreover, PAF has been  
38      shown to stimulate platelet degranulation and aggre-  
39      gation (Snyder et al., 1989), to cause the contraction  
40      of smooth muscles, bronchoconstriction, and coronary  
41

*Abbreviations:* Ac, acetyl; Bn, benzyl; LPC, lysophosphatidylcholine; PAF, platelet-activating factor; Ph, phenyl; SM, sphingomyelin; TBAF, tetrabutylammonium fluoride; TBDPS, tert-butyldiphenylsilyl; THF, tetrahydrofuran

\* Corresponding author. Present address: 39 Anafis Str., GR-113 64 Athens, Greece. Tel.: +30 210 7274265; fax: +30 210 7274265.

E-mail address: [demopoulos@chem.uoa.gr](mailto:demopoulos@chem.uoa.gr) (C.A. Demopoulos).